На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
статистика
основная асимптотическая оценка
математика
асимптотический ряд
математика
асимптотический рост
математика
асимптотически сходящаяся
математика
асимптотически равный
математика
асимптотическая формула
математика
асимптотическое приближение
математика
асимптотика
асимптотическое поведение
строительное дело
асимптотический характер изменения (кривой), асимптотическое поведение
математика
асимптотическое решение
математика
асимптотическая теория
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior.
As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large. If f(n) = n2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n2. The function f(n) is said to be "asymptotically equivalent to n2, as n → ∞". This is often written symbolically as f (n) ~ n2, which is read as "f(n) is asymptotic to n2".
An example of an important asymptotic result is the prime number theorem. Let π(x) denote the prime-counting function (which is not directly related to the constant pi), i.e. π(x) is the number of prime numbers that are less than or equal to x. Then the theorem states that
Asymptotic analysis is commonly used in computer science as part of the analysis of algorithms and is often expressed there in terms of big O notation.